Activities Around Advanced Hydrocarbon Fuels from Biomass

Rick Orth, John Holladay Pacific Northwest National Laboratory PO Box 999, MSIN: P8-60, Richland, WA 99352 rick.orth@pnl.gov

Proudly Operated by Battelle Since 1965

2009 Solicitation Advanced Fuels "Beyond Ethanol"

- Create a U.S. <u>Advanced</u> <u>Biofuels Research</u> <u>Consortium</u> to develop technologies and facilitate subsequent demonstration of infrastructurecompatible biofuels (\$35 million)
- Create a U.S. <u>Algal</u> <u>Biofuels Research</u> <u>Consortium</u> to accelerate demonstration of algal biofuels (\$50 million)

U.S. Department of Energy Golden Field Office

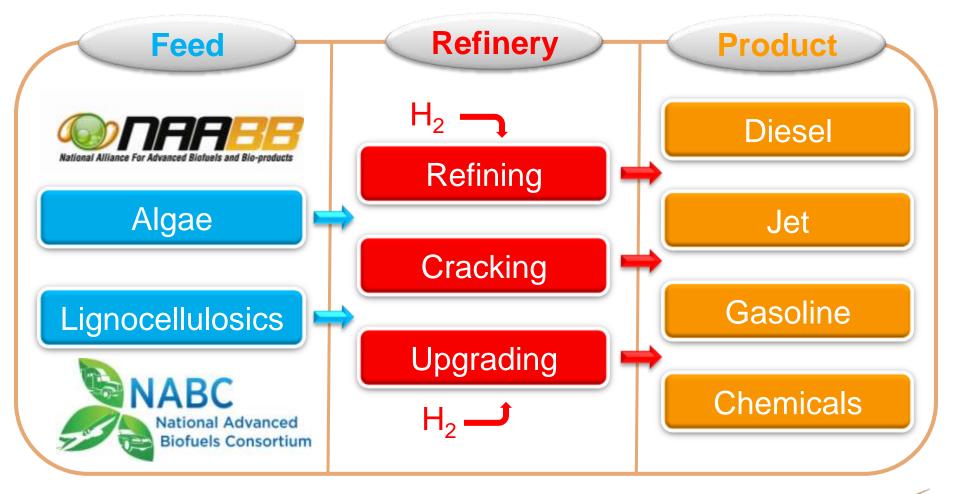
Recovery Act: Development of Algal / Advanced Biofuels Consortia

Funding Opportunity Announcement Number: DE-FOA-0000123

Announcement Type: Initial

CFDA Number: 81.087

Issue Date:


Application Due Date:

July 15, 2009

September 14, 2009, 11:59 PM Eastern Time

Refinery Processing of biomass

Project Objective – Develop cost-effective technologies that supplement petroleum-derived fuels with advanced "drop-in" biofuels that are compatible with today's transportation infrastructure and are produced in a sustainable manner.

ARRA Funded: - 3 year effort

Total

- DOE Funding \$35.0M
- <u>Cost Share \$12.5M</u>

\$47.5M

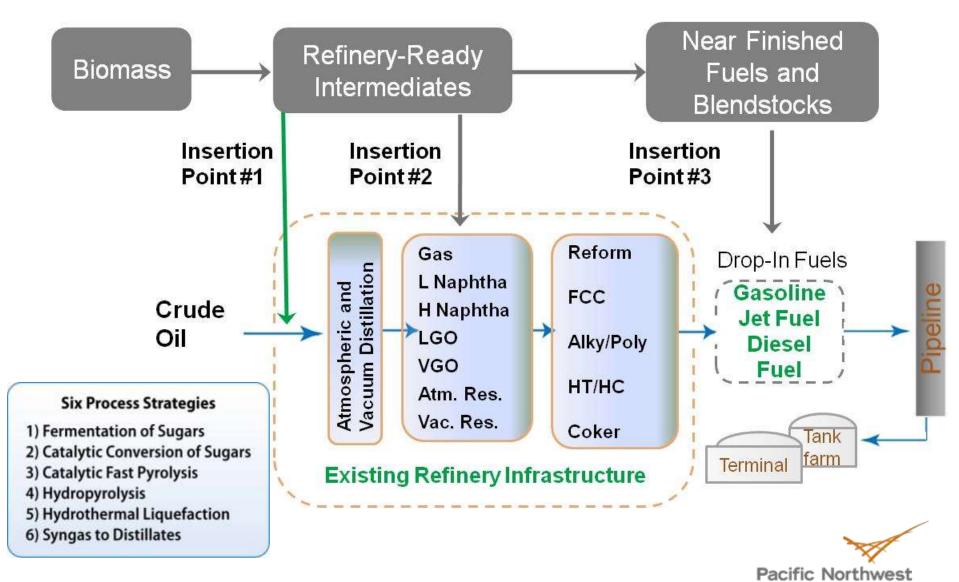
Consortium Leads

National Renewable Energy Laboratory Pacific Northwest National Laboratory

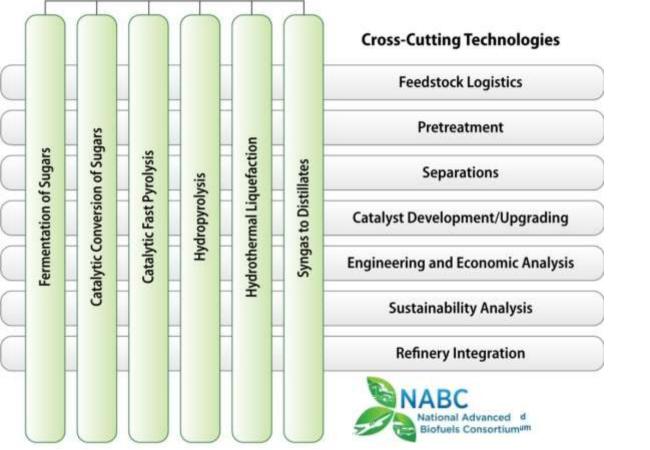
Consortium Partners

Albemarle Corporation **Amyris Biotechnologies** Argonne National Laboratory **BP** Products North America Inc. Catchlight Energy, LLC Colorado School of Mines Iowa State University

Los Alamos National Laboratory Pall Corporation **RTI** International Tesoro Companies Inc. University of California, Davis UOP, LLC Virent Energy Systems Washington State University

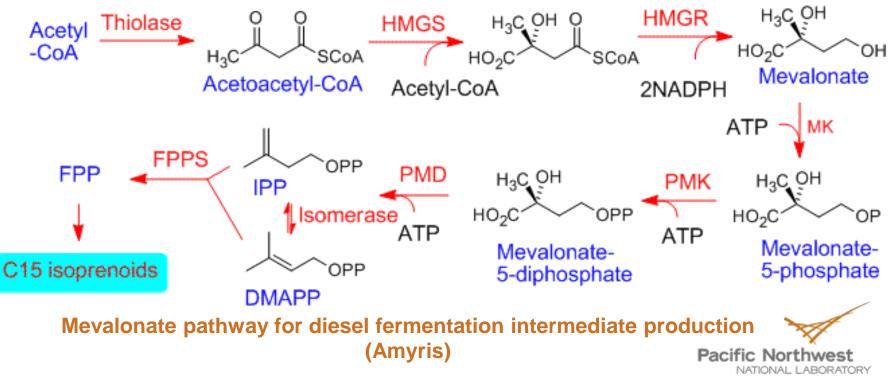


Refinery Integration Strategy

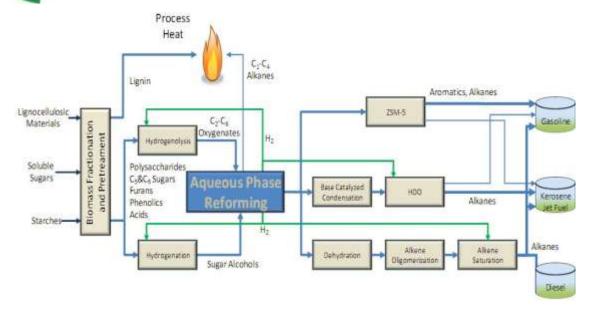

NATIONAL LABORATORY

Research Strategies

Process Strategies



NABC matrix of technology and strategy teams will ensure development of complete integrated processes.



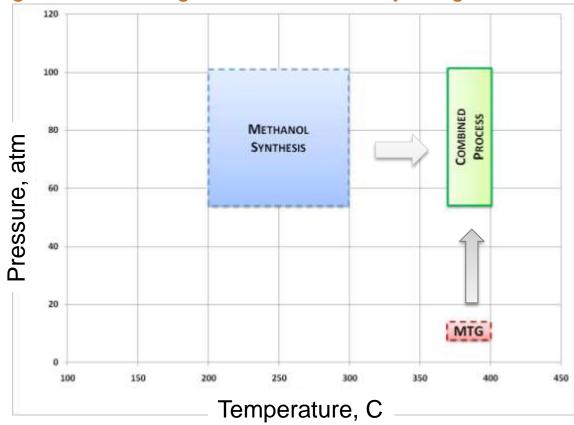
- The fermentation technology builds on isoprenoids. The primary (5carbon) building block is isopentenyl pyrophosphate (IPP).
- Will be looking at organism development for C5 sugar utilization and biomass hydrolysate compatibility.

NABC: For Open Distribution

Catalysis of Lignocellulosic Sugars

- Develop a catalytic process to convert lignocellulosic biomass into gasoline and jet fuels.
- Process steps consists of novel integration of catalytic steps that are known in the petroleum refining industry.
- Key steps include: (1) pretreatment/fractionation, (2) hydrogenation, (3) aqueous phase reforming (APR) and (4) acid catalyzed dehydrations/ condensations.
- APR is done under moderate temperatures and pressures (ca. 175 300 C and 150 1300 psi).

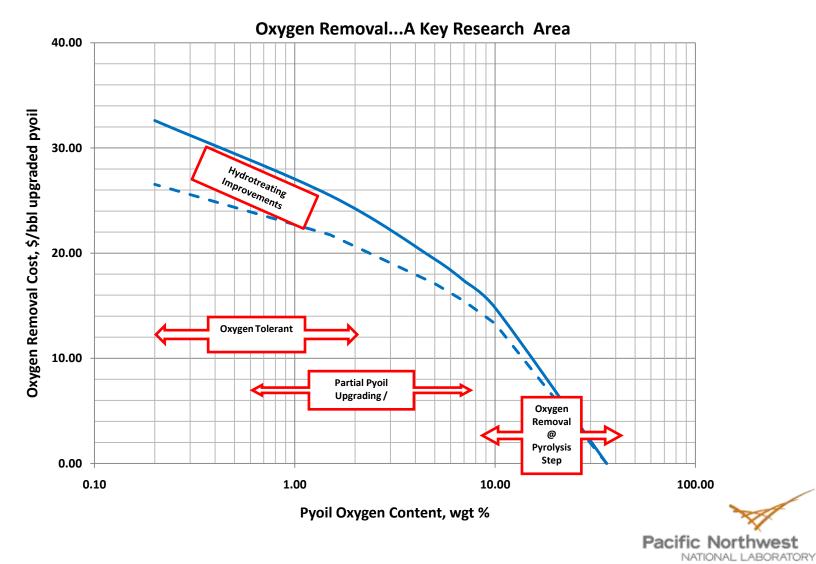
IABC

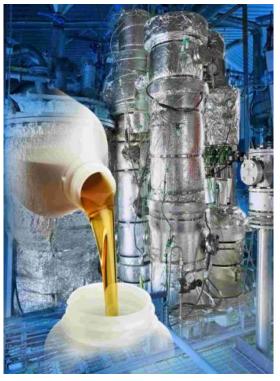

National Advanced

Biofuels Consortium

Syngas to Distillates

- Integrate and combine unit operations with catalyst improvements to produce gasoline and diesel.
- Combine the MTG/MOGD conversions efficiently into a single reactor along with effective catalyst regeneration.




Insertion Point 1&2 Strategies

Catalytic Fast Pyrolysis

- Pyrolysis occurs at ambient pressure and temperatures between 400 and 600 C at reaction times approaching 0.5s.
- Gives relatively high oil yields approaching 70% by weight.
- Fast pyrolysis oil however has many undesirable properties:
 - High water content: 15-30%
 - High O content: 35-40%
 - High acidity; pH = 2.5, TAN > 100 mg KOH/g oil
 - Unstable (phase separation, reactions)
 - Low HHV: 16-19 MJ/kg
- Will be looking at catalytic methods to produce improved bio-oils for insertion into the refinery.

Courtesy VTT, Finland

Hydropyrolysis

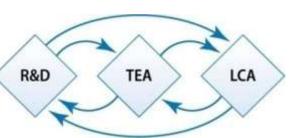
- Hydropyrolysis, (pyrolysis in the presence of hydrogen and added catalyst) is carried out at pressures that are substantially higher than those employed for fast pyrolysis (c.a. 250–500 psi).
- Produces an oil-like product that has much of the oxygen removed and is more suitable for co-processing in a petroleum refinery or for upgrading to finished fuels.
- In this project we will investigate methods to reduce hydrogen demand.

Pacific Northwest NATIONAL LABORATORY

Hydrothermal Liquefaction

- Hydrothermal liquefaction occurs in liquid-phase media at temperatures between 300-400 C and at the vapor pressure of the media.
- Temperature is 374 C with pressure between 2500-3000 psi.
- Catalysts are employed to speed the hydrogen transfer reactions.
- Product oils have low water content and are lower in oxygen (c.a. <10%). but have other undesirable physico-chemical properties such as a relatively high viscosity.
- The focus will be on new reaction media and catalysts that reduce process severity while maintaining high reaction rates and low oxygen content of the oil.

Courtesy Veba Oel


Sustainability and GHG Analysis

GHG Reduction Potential of Advanced Biofuels based on preliminary data

Feedstock	Process Technology	Fuel	GHG Reduction vs.	Source
		Products	Conventional Fuels	
Corn stover	Fast Pyrolysis with refinery	Gasoline	62% vs. conventional	NREL/UOP
	hydroprocessing	and Diesel	(gasoline + diesel)	analysis
Corn Stover	Hydrolysis plus aqueous	Gasoline	94% vs. conventional	Virent analysis
	reforming of sugars		gasoline	using GREET
Energy Cane	Hydrolysis plus fermentation	Diesel	>90% vs. US diesel	Amyris analysis
	to hydrocarbons			

- Sustainability includes elements of economic and environment as well as societal benefits.
- Metrics, include GHG emissions, air toxics, water quality, and water use.
- LCA tools for quantifying land use change:
 - Global Trade Analysis Project (GTAP) model, being incorporated into GREET by ANL.
 - Systems dynamic land use change model developed by John Sheehan (University of Minnesota) and Nathaniel Greene (NRDC).

Early comparison of Liquid Fuel Yields

Fuel Production Technology	Process Energy Efficiency
Conventional Petroleum Refining to	85%
Gasoline	
Conventional Petroleum Refining to	87%
Low-S Diesel	
Biomass Gasification / Fischer-Tropsch	41%
Fast pyrolysis (with HDO)	77%
Hydropyrolysis	82%

Biofuels for Advancing America

