BIOPRODUCTS FROM BIOMASS

University of Washington

Bioresource Science and Engineering

William T. McKean

Mark Lewis

BIOPRODUCTS FROM BIOMASS

OBJECTIVES:

•PRODUCE FIBER AND CHEMICAL PRODUCTS FROM BIOMASS

APPROACH:

 PULPING with MILD CONDITIONS DEVELOPED TO PARTIALLY DISSOLVE NON-WOOD HEMICELLULOSE without DECOMPOSITION

• PRODUCE THE BIOCHEMICALS FROM THE HEMICELLULOSE RICH PULPING WASTE LIQUOR

BIOREFINERY: RAW MATERIALS

RAW MATERIALS

1.Agricultural Residues a.**Wheat Straw** b.Seed Alfalfa Straw c.Canola Straw d.Bagasse e.Corn Stover

2. Energy Crops a.Energy Cane b.Switch Grass

BIOREFINERY: PULPING

RAW MATERIALS

1.Agricultural Residues a.**Wheat Straw** b.Seed Alfalfa Straw c.Canola Straw d.Bagasse e.Corn Stover

2. Energy Crops a.Energy Cane b.Switch Grass

BIOREFINERY: PRODUCTS

RAW MATERIALS

1.Agricultural Residues a.**Wheat Straw** b.Seed Alfalfa Straw c.Canola Straw d.Bagasse e.Corn Stover

2. Energy Crops a.Energy Cane b.Switch Grass

- 1. Hemicellulose Sugars
- 2. Sulfur Free Lignin
- 3. Non Process elements(ash)

FIBER PRODUCTS

- 1. Molded Products
- 2. Food Service
- 3. Packaging-Paper/Paperboard
- 4. Printing and Writing Grades
- 5. Niche Specialty

BIOREFINERY: GLYCOL PRODUCTION

SUGAR RAW MATERIALS

- 1.Non wood Biomass PulpingWaste Liquors
- 2. Energy Sugar Beets
- 3. Wood Sources:
- Sulfite Pulping Waste Liquor
 Various Pulp Mill Sludges
- Acid Prehydrolysis Liquors
- Some Solvent Pulping Liquors
- Steam Explosion Liquid and Solid Products

SUGAR PRETREATMENT

• Lignin, Ash and Impurity Removal

CATALYTIC HYDROGENATION

- Sugar Alditols
- Ethylene Glycol
- Propylene Glycol
- Butane Diols

BIOREFINERY MATERIAL BALANCE – WHEAT STRAW

LABORATORY CATALYTIC HYDROGENATION

PILOT PLANT HYDROGENATION REACTORS

Sugar-to-Glycol

Manufacturing Bio-chemical Glycols From Cellulosic Sugars

Sample Pulp Mill Economics

October 2012

North Vancouver, BC www.s2gbiochem.com

1

Example: Pulp Mill Economics

- Biomass to Mill "A": 1,200,000 MT/yr (dry)
 Hemicellulose in biomass ~20%: 240,000 MT/yr
 Dissolving pulp yield (primarily cellulose): 450,0000 MT/yr @ \$750+/MT
 Balance burned: ~\$100/MT value
- Supplement Revenue: Sugar to Glycol
 - Monomer sugar rich pre-hydrolyzate : e.g.: 200,000 MT/yr
 - Potential to offload recovery furnace increase pulp production
 - Supply hemicellulose over-the-fence to Sugar-to-Glycol plant...

S2G Economics - Highly Simplified, Worst Case

\$68,000,000/yr

- Feed:
- Products:

52G BioChem

- PG:
- EG
- BD
- Net Revenue
- Opportunity cost (sugar cost): (power: ~\$100/MT feed)
- Operating costs: \$72,000,000 (hydrogen, catalyst, steam, labour, etc.):~\$450/MT
- Crude margin:
 - Capital: \$150,000,000

200,000 MT/yr monomer sugars 160,000 MT/yr glycols (80% yield) \$1500/MT \$850/MT \rightarrow 1500/MT \$2000+/MT \sim \$160,000,000 +/yr \$20,000,000

26

Bio

Next Steps

- Confirm process performance pilot runs with real liquors
- Update process modelling → engineering study → economic model
- Arrange project financing, partners

S2G Goal: Value Growth

11/19/2012

Bio