Cow Power to Horsepower: Using Dairy Cow Derived Biomethane to Fuel Vehicles in Whatcom County

Western Washington University Vehicle Research Institute
Eric Leonhardt

Vehicle Research Institute Background Why Use Biomethane for Transportation? Challenges with Biogas
Experience with Viking 32 Hybrid
Pilot Project
Questions

PSE PUGET SOUND ENERGY
The Energy To Do Great Things

Thank you

WASHINGTON STATE STUNIVERSITY

THE PAUL G. ALLEN FAMILY foundation

Public Utility District no. 1 of Whatcom County

Dairy Farms in Whatcom County

Why Use Biomethane for Transportation?

Improve economics of the anaerobic digester
Alternate market for gas production
Provide low-cost fuel to consumers, public transportation, or farming equipment
Sufficient fuel quantity
Support low emission vehicles
Reduce equivalent carbon dioxide emissions
Reduce dependence on imported oil

Digester Economics

Relate electrical energy production to value of CH_{4} gas

1) 1200 cows $\times 60 \mathrm{ft}^{\wedge} 3 / \mathrm{CH}_{4}$ per day $=72000 \mathrm{ft} \wedge 3$ day or 3000 $\mathrm{ft} \wedge 3 /$ hour (actual value closer to 5040 ft ^ $3 / \mathrm{hr}$)
2) Produce $350 \mathrm{kWh} @ \$ 0.08=\$ 28$ per hour or $\$ 672 /$ day
3) Lower heating value of $\mathrm{CH}_{4}: \sim 904 \mathrm{BTU} / \mathrm{ft}^{\wedge} 3$ with $90 \% \mathrm{CH}_{4}$
4) BTU per \$: (904 BTU/ft^3 x $5040 \mathrm{ft} \wedge 3 /$ hour $) /(\$ 28 /$ hour $)$ Result: 162,720 BTU/\$
Compare with Gasoline at $\$ 3.06 /$ gallon (West Coast 04/12/10):
$115,500 \mathrm{BTU} / \mathrm{gallon} * 1$ gallon/\$3.06 $=37,745 \mathrm{BTU} / \$$
Roughly 4.3 times more energy per \$ for Biomethane (162,720 BTU/\$ / 37,745 BTU/\$)

Whatcom County Fuel Quantity

- 66,000 cows * $60 \mathrm{ft}^{\wedge 3}=3.96 \times 10^{\wedge 6} \mathrm{ft}^{\wedge} / \mathrm{d}^{2 y} \mathrm{CH}_{4}$
- $3.96 \times 10^{\wedge 6} \mathrm{ft}^{\wedge 3}$ * $904 \mathrm{BTU} / \mathrm{ft}^{\wedge 3}=3.58 \times 10^{\wedge} 9 \mathrm{BTU}$
- $3.58 \times 10^{\wedge} 9 \mathrm{BTU} / 115,500 \mathrm{BTU} / \mathrm{gal}$ (gasoline)
- Result: 30,994 gallons of gasoline equivalent energy per day
- Over 11 million gallons of gasoline equivalent energy per year

Natural Gas Emissions

Vehicle

Biogas Challenges for Transportation

1. Digester biogas contains $\sim 40 \%$ carbon dioxide
2. Biogas contains ~ 3000 ppm hydrogen sulfide
3. Cost of biogas upgrading
4. Biomethane must be compressed to 3600 psi to provide sufficient range in vehicle
5. Cost of compressed natural gas fueling station
6. Special fuel system and calibration required for biomethane or natural gas
7. Tank size is four times size of gasoline tank
8. Limited vehicle selection

Clean Biogas Solutions

- Petroleum Refining "Upgrading"
- Wastewater Treatment
- South Seattle Waste Water Treatment Facility
- Tacoma Waste Water Treatment Facility
- Iron Oxide (H2S)
- Pressure Swing Absorber (CO2)
- Membranes
- Polyethylene Glycol
- H2O
- Amines

Biogas Scrubber

Three stage process

1) Column of iron chips
2) Sodium Hydroxide 10% aqueous solution
3) Desiccant
1.4 scfm pump
compressed refined gas to ~1700 psi

Results

Pilot Project

- Provide biomethane fuel for up to three MCI F coach buses or E450 Krystal Coaches with Airporter Shuttle/Bellair Charters
- Initially convert one bus
- MCI F coach 36 passenger bus requires removing Cummins ISC 8.3 liter diesel and replace with Cummins Westport ISL G 8.9 liter natural gas engine
- World CNG convert E450/E550 Ford V-10 platform
- Meet 2010 EPA requirements
- Transport biomethane fuel from Vander Haak Dairy to Ferndale bus facility, ~ 34 miles round trip
- Operate pilot project within a five year window
- Create a roadmap for implementing biomethane in Whatcom County

Pilot Goals

- Power buses with biomethane in a pilot project with 100,000 Gasoline Gallon Equivalent annual production
- Less than 15 ppm Hydrogen Sulfide
- Produce 12 Gasoline gallon equivalents (GGE) per hour
- Equivalent of 240 GGE in 20 hour of operation
- At 6 MPGe, 360,000 annual miles (6 MCI F coaches)
- At $20 \mathrm{MPGe}, 1,200,000$ annual miles (60 cars served)
- At $30 \mathrm{MPGe}, 1,800,000$ annual miles (90 cars served)
- Based on 20k miles/year
- At \$2.00/gasoline gallon equivalent, adds \$480/day or $\$ 120,000$ gross per year (5 days/wk, 50 wks/year)

WWU Prototype Upgrading Facility

System Cost

Biogas Blower	\$	10,000.00	
Upgrading Facility	\$	50,000.00	
Gas Dryer, 50 scfm to 75 scfm	\$	50,000.00	\$75,000.00
Compressor 60-80 scfm	\$	100,000.00	
Priority Fill Panel	\$	10,000.00	\$20,000.00
Storage Tank Array ~\$30,000 per 10,000 scf/80 GGE	\$	150,000.00	
Dispenser -- Fast Fill 2 post	\$	37,000.00	
Dispenser Time Fill ~\$3,000 per Post	\$	15,000.00	
Card Reader	\$	4,000.00	
Facility--pad, container, power	\$	50,000.00	
Plumbing	\$	10,000.00	
	\$	486,000.00	

Progressive Automotive X Prize

