

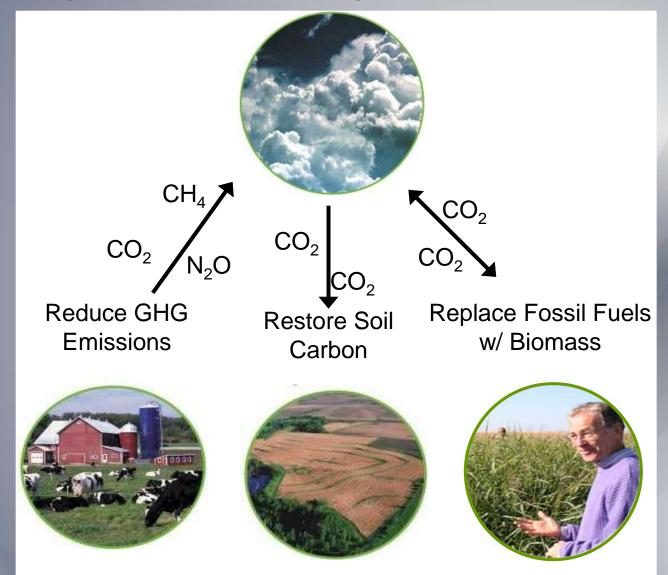
Climate Friendly Farming: Dairy Anaerobic Digestion

Chad Kruger*, Craig Frear, Shulin Chen, Craig MacConnell, Hal Collins, David Granatstein

*Interim Director, WSU CSANR

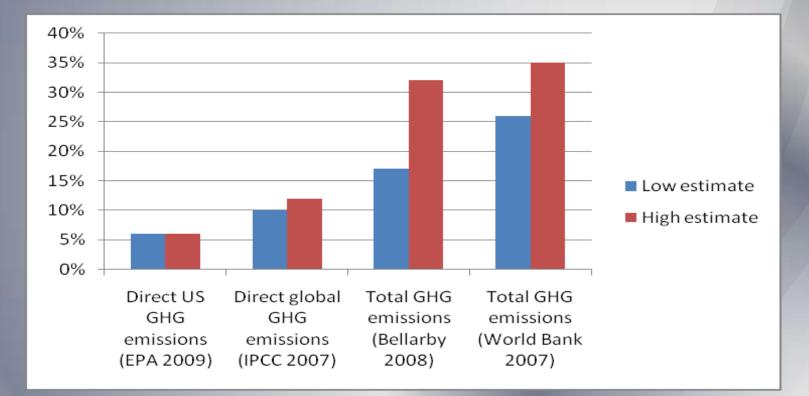
FRIENDLY FARMIN

Acknowledgements


- Funding: Paul G. Allen Family Foundation, USDA, "Appendix A", Industry, various others
- Partners: Vander Haak Dairy, Andgar Corporation, GHD, Multi-Form Harvest
- Collaborators: R. Shumway, J. Harrison, E. Leonhardt, K. Bowers
- Research Staff: G. Yorgey, W. Liao, T. Ewing, C. Bishop, U. Zaher, R. Li, P. Pandey, Q. Zhao, T. Zhang, A. Jiang, J. Ma, J. Streuble, Z. Wang. L. Yu

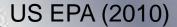
http://csanr.wsu.edu/publications/researchreports/cffreport.html

Climate Friendly Farming[™]



Improving the Carbon Footprint of Agriculture in the Pacific Northwest

How much does ag contribute to GHGs?



World Class. Face to Face.

GHG Emissions from Manure Management (US)

Table 6-1: Emissions from Agriculture (Tg CO ₂ Eq.)										
Gas/Source	1990		1995		2000		2005	2006	2007	2008
CH_4	169.6		185.9		183.7		186.7	188.1	194.2	194.0
Enteric Fermentation	132.4		143.7		136.8		136.7	139.0	141.2	140.8
Manure Management	29.3		33.9		38.6		42.2	42.3	45.9	45.0
Rice Cultivation	7.1		7.6		7.5		6.8	5.9	6.2	7.2
Field Burning of										
Agricultural Residues	0.8		0.7		0.9		0.9	0.9	1.0	1.0
N ₂ O	218.3		221.8		227.2		233.0	229.1	228.8	233.5
Agricultural Soil										
Management	203.5		205.9		210.1		215.8	211.2	211.0	215.9
Manure Management	14.4		15.5		16.7		16.6	17.3	17.3	17.1
Field Burning of										
Agricultural Residues	0.4		0.4		0.5		0.5	0.5	0.5	0.5
Total	387.8		407.7		410.9		419.7	417.2	423.0	427.5
Note: Totals may not sum due to independent rounding.										

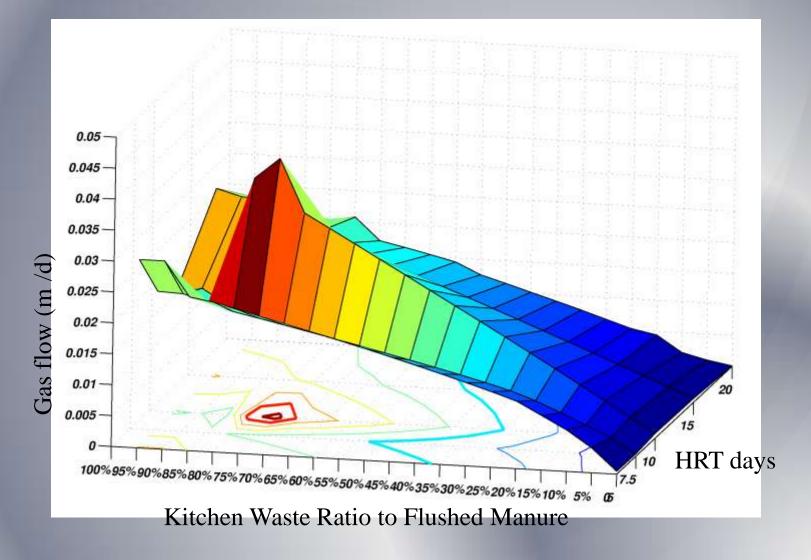
1% of TOTAL US GHG emissions come from manure management.

VanderHaak Digester Lynden Washington

Modified mesophilic plugflow digester by GHD Inc., and Andgar Corporation utilizing a Caterpillar G398 coupled to a 450 KW Generator

137,700 ft³ reactor with 28,600 gal/day flow containing 18.4% substrate and scrape manure from 695 WCE for a 33.8 day HRT

Vector Reduction Performance at VanderHaak


Parameter (g/L)	Influent	Effluent	Mean Reduction
Total Solids	70.42 ± 12.13	41.82 ± 4.03	40.61%
Volatile Solids	59.51 ± 7.49	30.52 ± 3.50	48.71%
COD	84.13 ± 15.04	27.16 ± 4.87	67.72%
Volatile Fatty Acids	7.71 ± 1.76	0.05 ± 0.02	99.35%
Fecal Coliform (cfu/g)	339,031 ± 247,461	3,418 ± 7,060	98.99%
Total Kjeldahl Nitrogen	4.12 ± 0.93	3.84 ± 0.53	NA
Total Phosphorous	0.51 ± 0.14	0.44 ± 0.10	NA
Fixed Solids	12.54 ± 1.69	11.35 ± 1.93	NA
Total Ammonia	1.87 ± 0.45	2.65 ± 0.76	+41.71
Potassium	2.31 ± 0.35	2.28 ± 0.27	NA
рН	6.87 ± 0.41	7.88 ± 0.14	+14.37
Alkalinity	8.96 ± 1.00	14.23 ± 1.80	+58.82

Co-digestion Performance at Vander Haak

Parameter	Units	Co-Digestion	Manure-Only	
Total Biogas	ft³ biogas/day	164,178	102,200	
Total Biogas	ft³ biogas/ cow* day	197	123	
Specific Methane Yield	ft ³ CH ₄ , lb VS _{Destroyed}	15.06	13.46	
Reactor Performance	ft ³ biogas/ ft ³ reactor day	1.19	0.74	
Performance Economics	ft ³ biogas/ ft ³ day/M\$	1.05	0.65	
Biogas Composition	%CH ₄	63.52%	55.9%	

Extra receipts from co-digestion can represent as much as 66% of the total project revenue

GISCOD General Integrated Solid Waste Co-digestion

Zaher et al. (2009), Water Research 43(10), 2717-2727

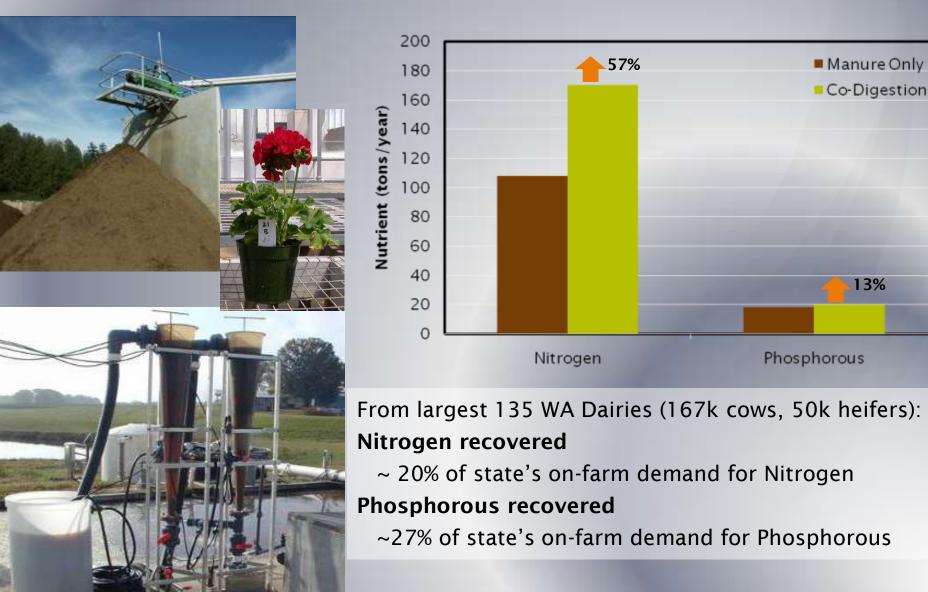
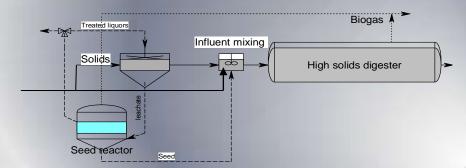

Potential for AD to reduce GHG

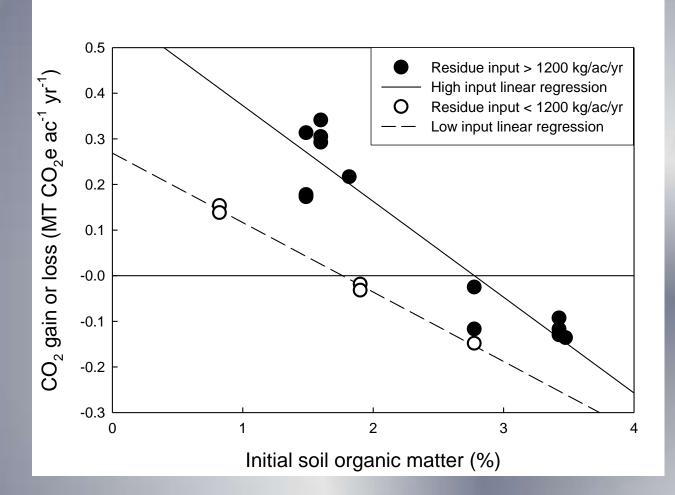
Table 1. Generalization of possible AD greenhouse gas credits, including hypothetical carbon credit for co-digestion of organic wastes, assuming installation of AD on 40 large dairies in Washington State (70,000 WEC)^a

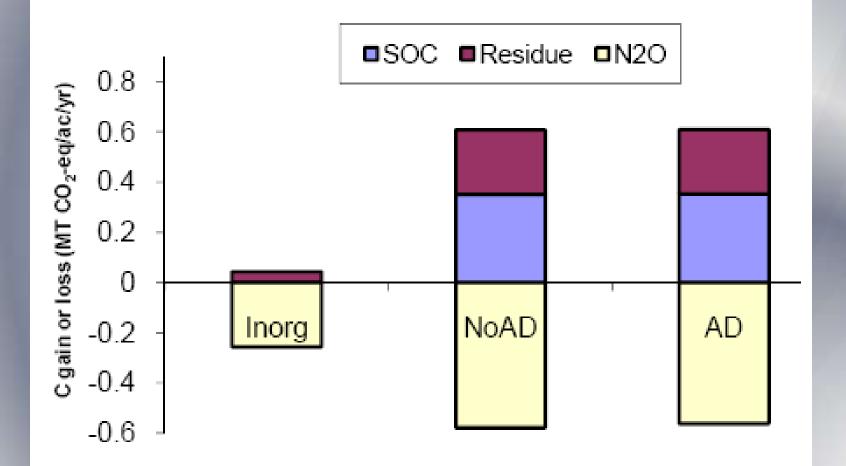
	Manure Credit	OFMSW	Credit ^c	Electricity Offset ^c	Total	
		Additional Manure Credit from Improved Digestion	Organic Waste Digestion Credit			
	MT CO ₂ e/ cow yr ^b	MTCO ₂ e/ cow yr	MT CO ₂ e/ wet t	MT CO ₂ e/ cow yr ^e	MT CO ₂ e/ cow yr	MMT CO ₂ e/ yr
Manure Only	4.89	NA	NA	0.68	5.57	0.39
Co-Digestion of Manure and Food Processing Wastes	4.89	8.73	0.85	1.62	15.24	1.07

Additional credit for peat substitute 32,000 – 36,000 MT CO₂e (~.5 MT / cow) Additional credit for biofertilizers ~17,000 MT CO₂e

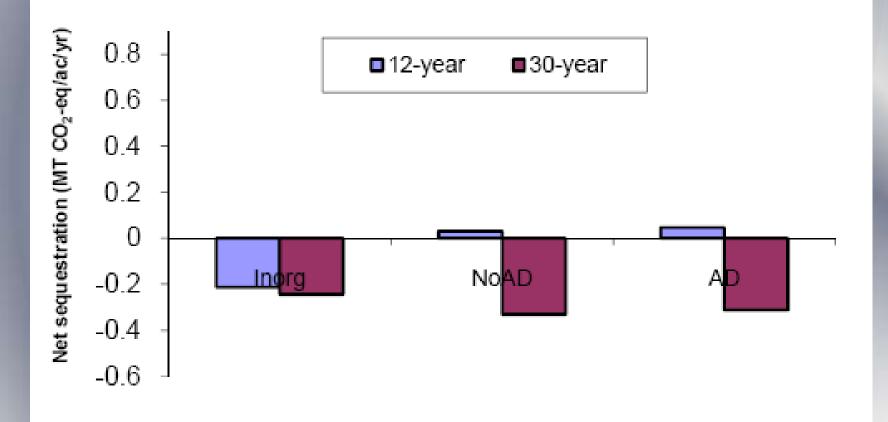
Anaerobic Digestion as a Nutrient Recovery Platform


WSU Patented AD Technologies •Fiber Treatment •Nutrient Recovery •Struvite Crystallizer •SBR for Flush Manure •High Solids Digester





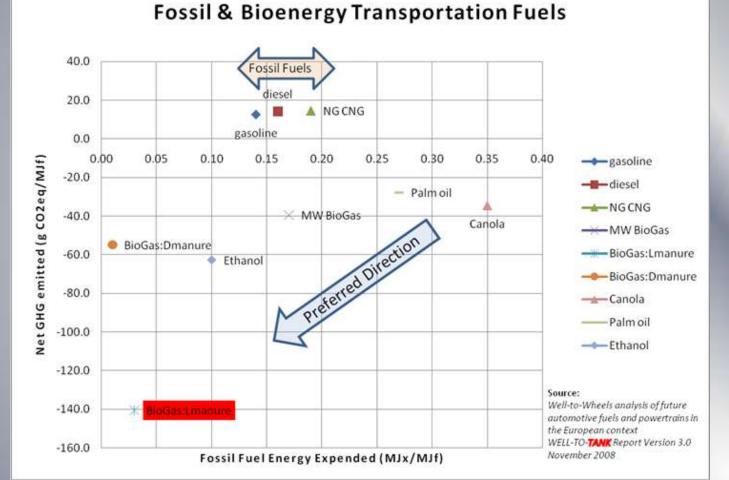
Initial SOC and Residue Inputs are Important Determinants of SOC Gain



In dryland systems in the PNW, initial SOC (low better than high) > residue input to the soil (high better than low) > tillage intensity (low better than high)

CropSyst Simulation of Manure Application With and Without Anaerobic Digestion (AD)

CropSyst Simulation of Manure Application With and Without Anaerobic Digestion (AD)



Compressed biomethane as a transportation fuel


1.79 - 3.75 MT CO2e / cow (manure, co-digestion)

Compare to 0.68 – 1.62 MT CO2e / cow electricity

Small Farm/"Household" Applications

CSANR

http://csanr.wsu.edu Main Office: WSU Puyallup 2606 W. Pioneer Puyallup, WA 98371-4998 USA 253-445-4626

Wenatchee "CSANR Cluster" WSU TFREC 1100 N. Western Ave. Wenatchee, WA 98801 509-663-8181 x235