


## Improving the Economics of Lignocellulose Conversion to Transportation Fuels

Patricia M. Irving InnovaTek

2012 Northwest Bioenergy Research Symposium

#### **InnovaTek Vision**

Convert unique ideas to workable chemistry and hardware to provide sustainable solutions for the world we live in.

2

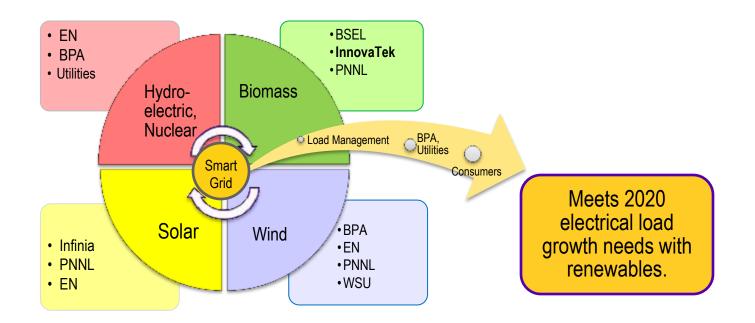
Move the world away from wasteful fossil fuel combustion and toward efficient energy generation from renewable biofuels.





## **InnovaTek Company Information**

- Incorporated in December 1997
- Richland WA Science & Engineering Park
- Reached profitability and positive net equity in 2002




- Assets are the knowledge base and IP developed with \$22 million in private, government, and owner funding
- Technologies being sold under product evaluation agreements or jointly developed with systems integrators and other large partners
- ~15 employees, all with advanced degrees



#### **Mid-Columbia Energy Initiative**

A private and public sector partnership that provides integrated energy solutions based on clean, carbonneutral technologies.



4



#### InnovaTek's Sustainable Power Goal

Develop chemical processing technology and advanced catalysts to produce clean hydrogen and renewable fuels



- Proprietary fuel processing technologies to create hydrogen for fuel cell power systems
- New product lines being developed for biomass refineries



#### **APU Produces 10 kW<sub>e</sub> from BioJet Fuel**

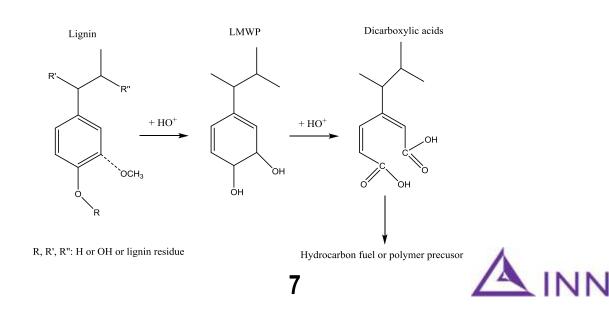
Integrated fuel cell and InnovaTek biofuel processing technology

#### Some synergies

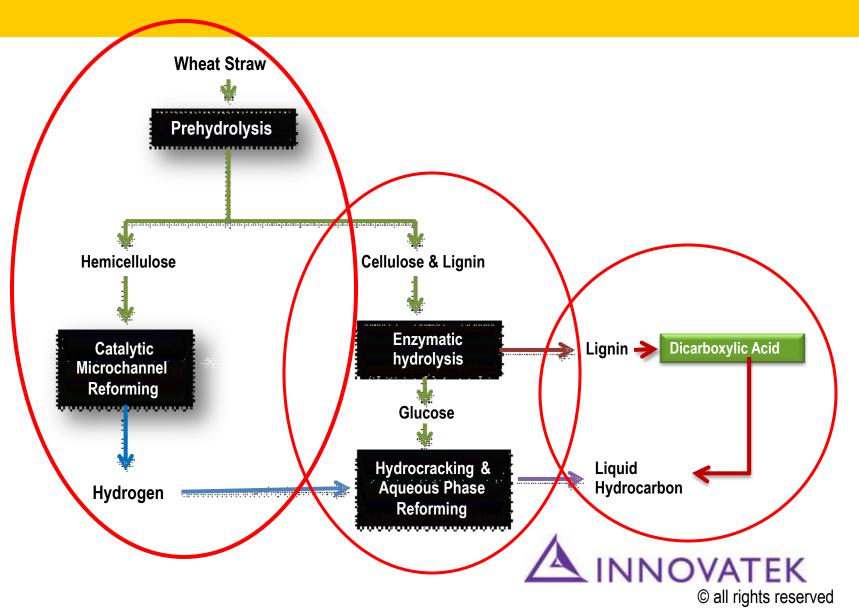
Solutions that may help improve biorefinery economics:

- Catalytic reforming to produce hydrogen
- Micro-channel reactors for efficient processing






#### **BioProducts Program Goals**


- 1. Maximize the value of each lignocellulosic biomass component to improve the economics of producing green liquid fuels
- 2. Replace fossil hydrocarbons with biomass as source for hydrogen supply for hydro-processing

© all rights reserved

3. Improve processing through "intensification" using advanced catalysts and microchannel reactors



#### **Biomass to Biofuel Conversion Process**



#### **Phase I Approach**

- Optimize the pre-hydrolysis process to recover xylose from hemicellulose fraction
- Develop reforming catalyst to convert xylose to hydrogen
- Design a micro-channel reforming reactor to increase catalytic activity and conversion for the reforming reaction





### **Prehydrolysis Optimization**

Work performed in collaboration with Dr. Xiao Zhang, WA State University

Objective – achieve a high xylose recovery yield (>85%) and produce a concentrated sugar stream (>7% w/v) from wheat straw

Optimized conversion of biomass through selection of

- reaction thermal conditions
- reaction time,
- reactant concentrations,
- reactant chemistry



### **Hydrogen Production from Xylose**

Use hydrogen from hemicellulose for the conversion of glucose to liquid hydrocarbon

 Will reduce the capital and operational costs of the process; eliminating need for natural gas

|                           | % of<br>wheat<br>straw | Recovered Monomeric<br>sugars,<br>g/1000 g wheat straw | H <sub>2</sub> Produced from xylose or<br>required for glucose conversion,<br>g /1000 g straw |
|---------------------------|------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Hemicellulose<br>(Xylose) | 29                     | 280                                                    | 15.13                                                                                         |
| Cellulose<br>(Glucose)    | 38                     | 401                                                    | 13.38                                                                                         |

Highly active proprietary catalyst optimized for micro-channel reactor



#### **InnovaTek's Proprietary Catalysts**



## iTek® catalysts were developed for reforming multiple types of hydrocarbons

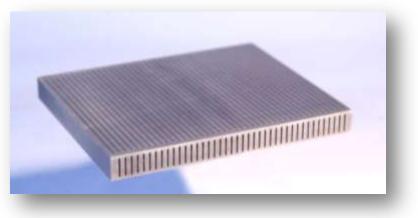
Nano-chemistry is used for microchannel reactor catalysts





#### **Xylose Reforming Catalyst Development**

# Provides high activity and durability; resists carbon deposition


- 1. Additives incorporated to modify structural and electronic properties of active sites
- 2. Homogeneous dispersion of active components to the catalyst matrix with very high surface area
- 3. Optimized metal crystallite size with high surface area as well as high stability

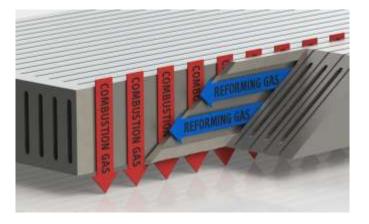




#### **Microchannel Catalytic Processing**

- Intensified chemical reaction rates that are 10-1000x faster and higher conversion efficiency than conventional systems
- Compact, efficient design is perfect for distributed production of fuels on a small decentralized basis
- Processing channels in the millimeter range
- Higher heat and mass transfer allows use of more active catalysts






#### **Microchannel Reactor Design**

- Reduces limitations in the transport of heat or matter thereby allowing rapid reaction rates
- Creates strong concentration gradients in the direction of the reaction path
  - High processing rate with low dP
  - Minimizes reactor & catalyst volume to reduce size & cost



Close-up of reaction & HX channels





#### **Process Intensification and Economics**

- Hydroprocessing reactions need to create an effective triple-phase interface between the liquid hydrocarbons, gaseous hydrogen and solid catalyst
- Through improved mixing and mass transfer, microchannel technology improves this interface, thereby intensifying the reaction
- As a result of improved volumetric and catalytic productivity, microchannel systems can have lower capital and operating costs than conventional systems





### **Distributed Scale Advantages**

#### Modular

- Transportable to remote locations near source of feedstock
- Scale-up by "numbering up"

Lower Risk

- Smaller plants require smaller investments
- Inherently safer

**Reduced Costs** 

- Lower capital costs
- Lower operating costs







#### www.innovatek.com

# Products are original designs and chemistry that we create, fabricate, and test in our facility



Work supported in part by U.S. DOE

