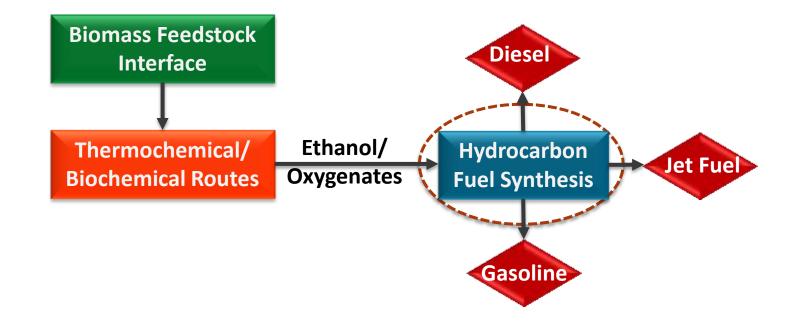


Proudly Operated by Battelle Since 1965

Northwest Efforts Toward Producing Aviation Fuels Using Hybrid Approaches

Karl Albrecht, Karthi Ramasamy, Yunhua Zhu, Richard Hallen, Michael Lilga, John Holladay


Presented by Richard Hallen

Chemical and Biological Process Development Group Bioproducts, Sciences, and Engineering Laboratory Pacific Northwest National Laboratory, Richland, WA richard.hallen@pnnl.gov

Ethanol and Other Oxygenates

- Upgrading of minimally treated, non-fuel grade ethanol, and/or
- Mixed alcohols and other oxygenates to hydrocarbon fuels

Ethanol Case Study

- Partnership with Imperium Aviation Fuels
- Technical feasibility assessment supported by experimental data
- Demonstrated upgrading to hydrocarbon meeting jet specifications

Systems	MTG	MOGD- Base	MOGD-Jet			
Energy yield (MJ/MJ energy input)						
Jet fuel	0	0.360	0.635			
LPG	0.270	0	0			
Gasoline	0.574	0.399	0.087			
Diesel	0.037	0.048	0.085			
Fuel gas	0.046	0	0			
Total	0.927	0.807	0.807			

- Models assembled to assessment routes for ethanol based upon literature data for MTG and MOGD like processes
- Energy efficiency of routes estimated using model
- Experimental data from MTG like process supports the production of a fraction of hydrocarbons that have jet fuel properties

Ethanol Case Study

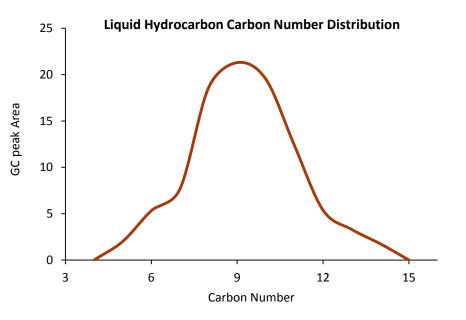
- Ethanol feed to a "MTG" like process (H-ZSM-5)
- Lab and bench scale experiments conducted
- Liter quantity of samples produced for further testing and evaluation

Ethanol Case Study

Proudly Operated by Battelle Since 1965

- PNNL prepared samples for fuel property evaluation
- Off-site specification testing conducted by AFRL

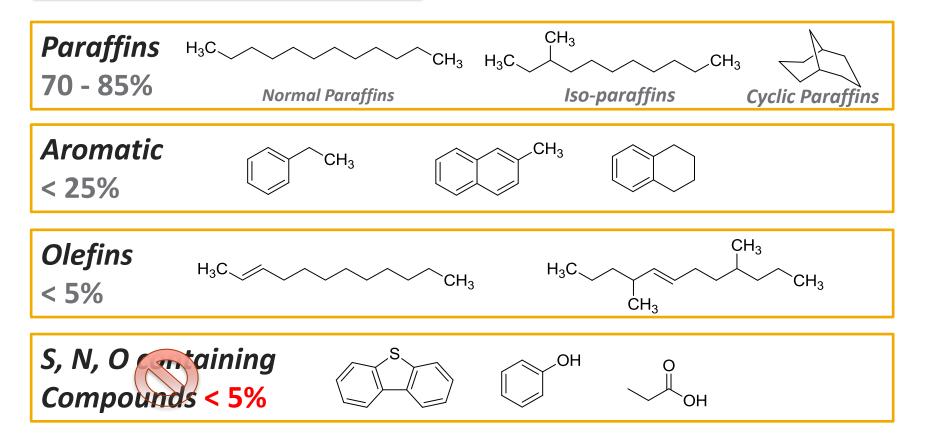
- Possible jet fuel blend stock
- Large volume samples required for fit-forpurpose testing


Specification Test	MIL-DTL- 83133H Spec Requirement	PNNL-1	PNNL-2	FT-SPK	JP-8
Aromatics, vol %	≤25	1.9	2.2	0.0	18.8
Olefins, vol %		1.2	1.1	0.0	0.8
Heat of Combustion (measured), MJ/Kg	≥42.8	43.1	43.1	44.3	43.3
Distillation:					
IBP, °C		161	165	144	159
10% recovered, °C	≤205	165	171	167	182
20% recovered, °C		166	173	177	189
50% recovered, °C		171	183	206	208
90% recovered, °C		190	220	256	244
EP, °C	≤300	214	243	275	265
Т90-Т10, °С	22	25	49	89	62
Residue, % vol	≤1.5	1.1	1.1	1.5	1.3
Loss, % vol	≤1.5	1	0.8	0.9	0.8
Flash point, °C	≥38	44	48	45	51
Freeze Point, °C	≤-47	<-60	<-60	-51	-50
Density @ 15°C, kg/L	0.775 - 0.840 (0.751 - 0.770)	0.803	0.814	0.756	0.804

Upgrading Mixed Alcohol Product

- Mixed alcohol product from PNNL Syngas to Alcohols Project
- Demonstrated feasibility of upgrading to hydrocarbon
- The product contains primarily aromatic components in the gasoline range carbon number with ~50% overlap with jet

Compounds	Feed Concentration (wt%)
Methanol	0 to 2.5
Ethanol	8 to 28
C3+ Alcohols	1 to 3
Acetic Acid	4 to 14
C2+ Aldehydes	6 to 17
Ethyl Acetate	1 to 18
Water	41 to 60



The compound classes in jet fuels

Proudly Operated by Battelle Since 1965

Ideal Carbon Length C8-C16

We desire fuels with composition similar to above

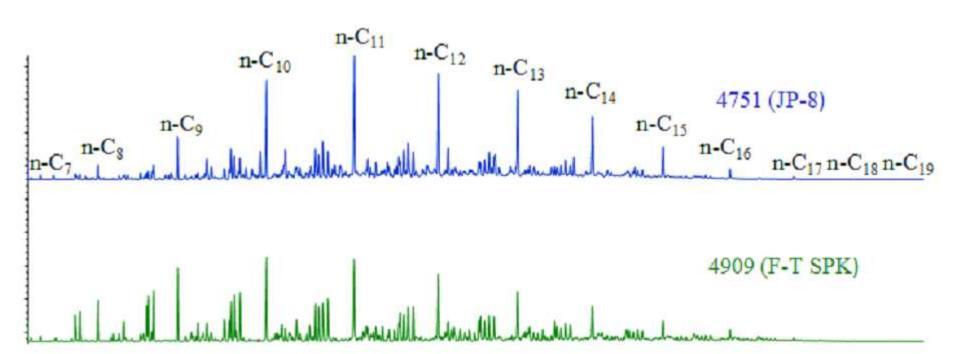
(i.e. a replacement or "drop-in" fuel)

Contribution of Different Hydrocarbon Classes to Jet Fuel

Proudly Operated by **Battelle** Since 1965

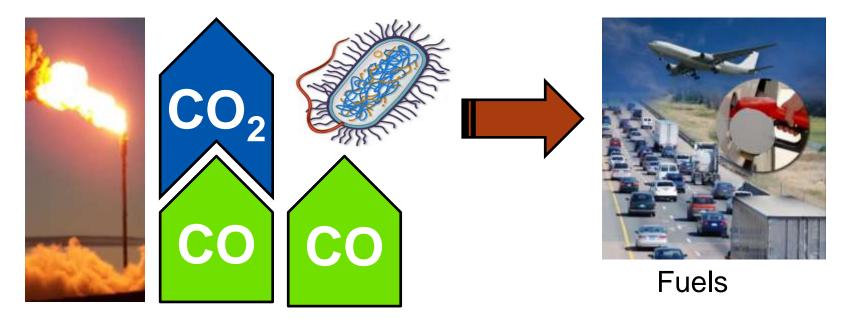
Potential Contribution^{*} of Each Hydrocarbon Class to Selected Jet Fuel Properties (For hydrocarbons in the jet fuel carbon number range)

	Hydrocarbon Class				
Jet Fuel Property	n-Paraffin	Isoparaffin	Naphthene	Aromatic	
Energy content:					
Gravimetric	+	+	0	-	
Volumetric	-	-	0	+	
Combustion quality	+	+	+	-	
Low-temperature fluidity		0/+	+	0/-	

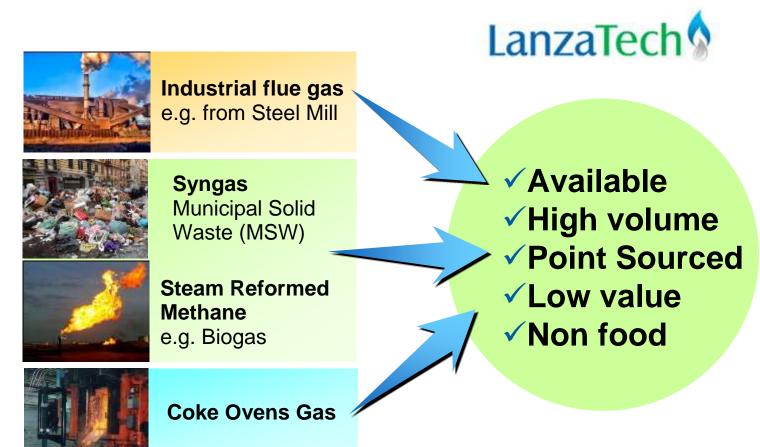

"+" indicates a beneficial effect, "0" a neutral or minor effect, and "-" a detrimental effect.

Aromatics in jet fuel also helps elastomers in the fuel system to swell and seal properly at low temperature

Source: Aviation Fuels Technical Review (FTR-3) prepared by Chevron

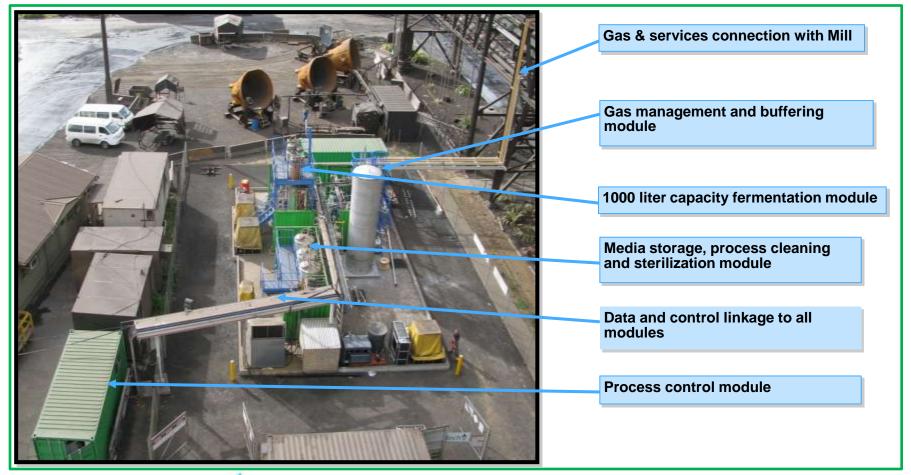

Type of molecules

CO-rich gasses can be captured from syn gas or from industrial processes. Industrial-rich CO is **always** converted to CO_2 either before or after release into the atmosphere


Intercept CO₂ formation by using CO for alcohol production

Gas flexibility opens up new options for waste resources

Proudly Operated by Battelle Since 1965



Focus of PNNL-Imperium-LanzaTech CRADA is on use of Biomass-Derived Synthesis Gas

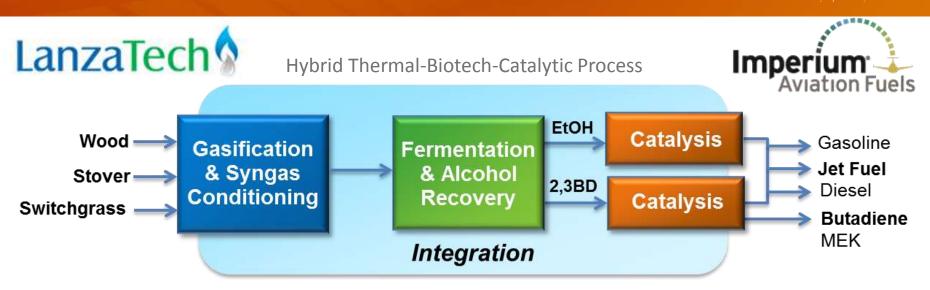
Building from Pilot Plant Operations from Steel Mill waste gasses

Proudly Operated by **Battelle** Since 1965

November 19, 2012

Initial demonstration using biomass shows promise...

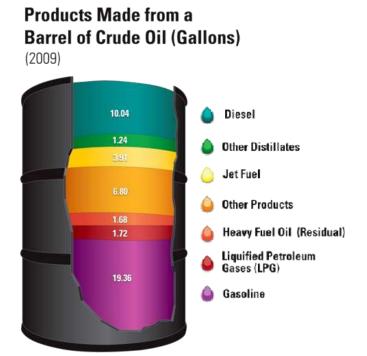
- Process used with biomass syngas
- Syngas from two biomass gasification technologies successfully tested
- Real biomass syngas used in all process demonstrations
- Initial results show ability to reach commercial production rates
- Set up pilot unit at NREL


 Focus in CRADA effort will be to determine minimum processing needs of the syn gas and to demonstrate that commercial production rates can be achieved

Alcohol to Jet Technologies

Pacific Northwest NATIONAL LABORATORY Proudly Oberated by Battelle Since 1965

- Minimally processed alcohols produced by LanzaTech, at NREL, are being sent to PNNL
- PNNL, partnering with Imperium, is integrating the catalytic steps to produce the final fuels for the purpose of
 - Demonstrating the integration of catalytic unit operations
 - Demonstrating fuel quality (producing material for fuel qualification testing and for fit for purpose testing)
 - Develop catalyst process to produce higher value chemical compounds in the process in addition to the jet fuel


Parting Thoughts

Drop-In and Renewable Fuels can provide:

- Increased US Security (Economic/Energy)
- Reduced environmental impact relative to fossil energy sources

Looking forward:

- Examine routes that maximize existing infrastructure and capital investments, and
- Seek to replace any of the carbon in the barrel of oil with equality and commitment to long term environmental considerations.

Source: Energy Information Administration, "Oil: Crude Oil and Petroleum Products Explained" and AEO2009, Updated February 2010, Reference Case.

- Upgrading of oxygenates was supported by funding from Imperium Aviation Fuels and Battelle Memorial Institute through an Internal Research and Development Project.
- The LanzaTech-Imperium-PNNL project is funded by the US Department of Energy, Office of the Biomass Program

