

Moving towards commercialization of lignocellulosic biomass to fuels to chemicals. How to deal with heterogeneous biomass?

<u>Renata Bura</u>, Shannon Ewanick, Erik Budsberg, Jordan Crawford, Brian Marquardt and Rick Gustafson

November 13th, 2012

Heterogeneous biomass

Hybrid poplar

Forest residues

How to deal with heterogeneous biomass?

Objectives

How can we improve the production of fuels and chemicals from biomass?

How do deal with heterogeneous lignocellulosic biomass?

Preconditioning Online reaction control Techno-economical analysis Life Cycle Analysis (LCA)

Chemical composition of hybrid poplar

Biomass	Cellulose (%)	Hemicellulose (%)	Lignin (%)
P. deltoides, Stoneville	42.2	16.6	25.6
NM 6	49.0	21.7	23.3
CAFI high lignin	43.8	20.4	29.1
CAFI low lignin	45.1	21.5	21.4
Caudina DN 34	43.7	19.6	27.2
DN 182	45.5	20.8	23.6
DN 17	43.7	23.2	23.1
NC 5260	45.1	20.3	21.5

(Sannigrahi et al., 2009)

Chemical composition-challenges

- Agronomy practices for stand establishment
- Water and nutrients management
- Weed control
- Harvest and storage
- Growing seasonal precipitation requirements
- Seasonal changes
- Age

Physical characteristics

- Moisture content
- Particle size
- Bark content
- Leaf/needle content

Harvest and collection
 Storage
 Transportation
 Handling

Affect of preconditioning

Switchgrass and sugarcane bagasse preparation

Fermentation

SSF — 5% (w/w), 10 FPU/g cellulose, 5 g/L of *S. cerevisiae*

(Ewanick and Bura, 2011; *Bioresource Technology* 102)

Final results — theoretical ethanol yield from raw biomass

(Ewanick and Bura, 2011; *Bioresource Technology* 102)

How to deal with heterogeneous biomass?

Pretreatment

Hydrolysis

Fermentation

Improving analytical methods

Spectroscopic

Raman High resolution chemical modification from molecular vibration

Methods

-time and cost

- -not online
- -less robust
- -requires trained personnel
- -destructive and invasive

-background fluorescence

- -resolution of multiple compounds
- -detection limits

What is so special about UW Raman?

Raman Instrument

- Kaiser Rxn2 System
- 785 nm excitation

6 mm ball probe (UW patent)

- Sapphire spherical lens
- Interfacial measurements
- No moving parts
- Sampling error <<1%</p>
- Temperature range: -40° C 350° C
- Pressure range: 0-350 Barr
- Effective sampling of liquids, slurries, powders, pastes and solids

Chemometric techniques (UW)

Algorithms to remove fluorescence (UW)

Experimental methods

- Fermentation in 1.3 L NBS Bioflo 115 bioreactor
- S. cerevisiae ATCC 96581 (6-C only)
- 785 nm Raman ball probe in vessel
- Manual sampling for HPLC analysis

Raman: surface plots

Synthetic sugars

Switchgrass hydrolysate

HPLC vs Raman

Techno-economical analysis (ASPEN)

Life Cycle Analysis (LCA)

How to deal with heterogeneous biomass?

- 3. Techno-economical analysis
- 4. Life Cycle Analysis (LCA)

Acknowledgements

WASHINGTON

- Centre for Process Control and Analysis (CPAC)
- Novozymes Inc.
- Weyerhaeuser Inc.
- UW Applied Physics Laboratory
- Denman Professor in Bioresource
 Science Engineering
- Biofuels and Bioproducts Laboratory Research Group

(www.depts.washington.edu/sfrbbl/)

