
Moving towards commercialization of 

lignocellulosic biomass to fuels to 

chemicals. How to deal with 

heterogeneous biomass?  

Renata Bura, Shannon Ewanick, Erik  Budsberg, Jordan Crawford, 
Brian Marquardt and Rick Gustafson 

 

November 13th, 2012 



Heterogeneous biomass 

 Hybrid poplar  

 

 

 

 

 Forest residues 

 



How to deal with heterogeneous biomass? 
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Chemical composition of hybrid poplar 

Biomass 

 

 Cellulose 

(%)  

Hemicellulose 

(%) 

Lignin  

(%) 

 P. deltoides, Stoneville 42.2 16.6 25.6 

 NM 6  49.0 21.7 23.3 

 CAFI high lignin 43.8 20.4 29.1 

 CAFI low lignin   45.1 21.5 21.4 

 Caudina DN 34  43.7 19.6 27.2 

 DN 182 45.5 20.8 23.6 

 DN 17 43.7 23.2 23.1 

 NC 5260   45.1 20.3 21.5 

(Sannigrahi et al., 2009) 



Chemical composition-challenges 

 Agronomy practices for stand establishment 

 Water and nutrients management 

 Weed control 

 Harvest and storage 

 Growing seasonal precipitation requirements 

 Seasonal changes 

 Age 

 

 



Physical characteristics 

 Moisture content 

 Particle size 

 Bark content 

 Leaf/needle content 

 Harvest and collection 

 Storage 

 Transportation 

 Handling 



Affect of preconditioning 
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Ethanol 



Switchgrass 

Sugarcane 

bagasse 

(Hawaii) 

Soak to 

80% 

moisture 

Air-dry  

(10 % 

moisture) 

Add 3% 

SO2 

No SO2 

added 

Steam explosion 

 

195-205 °C 

7.5-10 min 

Starting material Moisture adjustment SO2 addition Pretreatment 

SO2 

(Ewanick & Bura 2011) 

Switchgrass and sugarcane bagasse 

preparation 



Fermentation 
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SSF — 5% (w/w), 10 FPU/g cellulose, 5 g/L 

of S. cerevisiae  
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Switchgrass Sugarcane bagasse 

20% 

18% 

(Ewanick and Bura, 2011; Bioresource Technology 102) 
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Final results — theoretical ethanol yield from 

raw biomass  

28% 

(Ewanick and Bura, 2011; Bioresource Technology 102) 

Switchgrass 

 

 

Bagasse 

 

 

Switchgrass+SO2  

 

 

Bagasse+SO2 

 

0                 20               40               60                80 

 Theoretical ethanol yield from raw biomass (%) 



How to deal with heterogeneous biomass? 

Pretreatment Fermentation Hydrolysis 



Improving analytical methods 

Current  Spectroscopic 

Methods 

HPLC, GC, wet chemistry, 

enzymatic 

Raman 

 

Issues 

 

-time and cost 

-not online 

-less robust 

-requires trained personnel 

-destructive and invasive 

-background fluorescence 

-resolution of multiple 

compounds 

-detection limits 
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What is so special about UW Raman? 

 Raman Instrument 
 Kaiser Rxn2 System 

 785 nm excitation 

 6 mm ball probe (UW patent) 
 Sapphire spherical lens 

 Interfacial measurements 

 No moving parts 

 Sampling error <<1% 

 Temperature range: -40°C – 350° C 

 Pressure range: 0-350 Barr 

 Effective sampling of liquids, slurries,  

             powders, pastes and solids 

 Chemometric techniques  (UW) 

 Algorithms to remove fluorescence (UW) 
 

 



Experimental methods 

 Fermentation in 1.3 L NBS Bioflo 115 bioreactor 

 S. cerevisiae ATCC 96581 (6-C only) 

 785 nm Raman ball probe in vessel 

 Manual sampling for HPLC analysis 

 

Synthetic 

30 g/L glucose 

15 g/L xylose 

Switchgrass hydrolysate 

Steam exploded 

switchgrass + SO2 

Spiked w/ 30 g/L glucose 



Raman: surface plots 
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HPLC vs Raman 

HPLC 

 

 

 

 

 

 

Raman 

Sample preparation $$$ $ 

Equipment cost $$$ $$$ 

Sample run time 30-120 min 1 min 

Analysis time for 6 hour 

fermentation 

3 days, 36 data points Real time, 360 data 

points 

Online probe/sensor? No Yes 
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Techno-economical analysis (ASPEN) 



Life Cycle Analysis (LCA) 



How to deal with heterogeneous biomass? 

1. Preconditioning 

2. Online reaction control 

3. Techno-economical analysis 

4. Life Cycle Analysis (LCA) 
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