

Bioconversion of lignocellulosic biomass to ethanol: Challenges and opportunities

Renata Bura and Rick Gustafson

School of Forest Resources College of the Environment

November 8th, 2010

- Challenges and opportunities
 - How are we doing
 - Biomass
 - Processing (pretreatment)
 - Hydrolysis
 - Fermentation
 - Commercialization

Energy Independence and Security Act 2007- How are we doing?

EISA targets:

- 100 million gallons advanced fuel by 2009
- 200 million gallons of advanced fuel by 2010 We might hit 10 million

16 billion gallons/year cellulosic fuel

200 Biorefineries

~ 1 million tons/year biomass

\$400 million capital

80 million gallons/year \$0.25/lb product

100 Kraft pulp mills

750, 000 tons/year biomass

\$500 million capital

350,000 tons/year \$0.40/lb product

Lignocellulosic biomass appropriate for bioconversion

- Agricultural residues (corn stover, corn fibre, wheat straw, rice straw, switchgrass, sugar cane bagasse)
- Wood residues:
 - Hardwood (poplar, willow, pine)
 - Softwood (Douglas fir, pine)
- Paper waste
- Municipal solids waste

Biomass-challenges

- Regional availability (state, county)?
- How expensive is the biomass?
 - Location, location, location
 - Competing industries
- Stable and consistent feedstock supply available all year around
- For producer it must be profitable and fit into existing farm operations
- Biomass handling
 - Easy to storage
 - Transportation
 - Pre-pretreatment

Bioconversion of biomass to ethanol

Bioconversion-pretreatment

Hemicellulose

Pretreatment

Lignin

Pretreatment

Schematic of goals of pretreatment on lignocellulosic material (adapted from <u>Hsu et al., 1980</u>).

Various pretreatment methods

	Increases accessible surface area	Decrystalizes cellulose	Removes hemicellulose	Removes lignin	Alters lignin structure
Uncatalyzed steam explosion					
Liquid hot water		ND			
pH controlled hot water		ND			ND
Flow-through liquid hot water	-	ND			
Dilute acid					
Flow-through acid					
AFEX					
ARP					
Lime		ND			

Adapted from Mosier et al., 2005

Steam explosion

- Treatment of biomass with high-pressure steam for a short period of time followed by sudden decompression
- Physico-chemical pretreatment

- Pressure: 1.2-1.7 MPa (12-17atm)

Temperature: 170-250°C, 338-482 F

- Acid (H₂SO₄, SO₂) impregnation of wood increases SE efficiency
- Typical conditions:

Time: 10sec-10min

- One of the most cost effective and efficient pretreatment for agricultural, hardwood and softwood residues

Steam explosion equipment and process

Optimization of pretreatment

- Corn fibre: 190°C, 5min, 3% SO₂ (Bura *et al.,* 2004)
- Corn stover: 190°C, 5min, 0% SO₂ (Bura *et al.*, 2005)
- Mixture: corn fibre, corn stover, poplar (1:1:1) 190°C, 5min, 3% SO₂ (Bura *et al., 2005)*
- Rice straw: 200°C, 6min, 0% SO₂
- Poplar: 200°C, 5min, 3% SO₂
- Lodgepole pine: 205°C, 5min, 3% SO₂

Pretreatment-challenges (1)

• Not a clear winner

- Many different pretreatment options
 - Biomass
 - Products, co-products
- Pretreatment chemistry and kinetics
- Reactor design
- Large scale pretreatment operations

Pretreatment-challenges (2)

- Optimization of feedstock particle size and shape
 - Joint research with Forest Concepts
- Operate at high solids consistency to reduce energy and water usage
- Integrated to use surplus heat/steam from other processes at the facility
- Pretreatment methods for wood

Bioconversion-hydrolysis

Hemicellulose

Pretreatment

Lignin

What are cellulases?

- Produced by many strains of bacteria and fungi
- Catalyzes the depolymerization of cellulose chains
 - Endoglucanases
 - Exoglucanases
 - β-glucosidases

Hydrolysis-challenges (1)

- Enzyme requirements
 - Low dosage (2PFU/g of cellulose)
 - High consistency solid hydrolysis (>10 %)
 - Short hydrolysis time (24-48 hours)
- Factors influencing enzymatic hydrolysis
 - Enzyme
 - Substrate (lignin, hemicelluloses, crystallinity, DP, accessible surface area)

Hydrolysis-challenges (2)

- Cost of cellulases
 - Enzyme recycling/cost
- Incomplete hydrolysis/economics
 - Accessory enzymes
 - Additives
 - Surfactants
 - Protein

Bioconversion-fermentation

Hemicellulose

Pretreatment

Fermentation-challenges

- (*E.coli* KO11, *Z. mobilis*, *P. stipitis* and various strains of genetically modified *S. cerevisiae*)

- Fermentation requirements (nutrients, O₂)/economics
- SHF/SSF or Consolidated Bioprocessing?

Hydrolysis & Fermentation Process Instrumentation

- Operating cost ullet
 - Raw material is key: \$50/bdt?
 - Transportation (\$24/bdt for 100miles)
 - Storage (wheat straw requires covered storage-10-25%) lost)
 - Enzymes are still expensive: 10-50 ¢/gal product
- Develop co-products
- Techno/economical modeling
- Life Cycle Assessment no unintended • consequences
- Integration of processes •
- Scale-up issues

Why we do not have lignocellulosics to ethanol commercial process?

New process

- Biomass
- Pretreatment
 - Washington State-wood to ethanol comparative study
- Enzymatic hydrolysis
- Fermentation
- Process economics

Energy Independence and Security Act 2007

FIGURE 1 Volume changes over time.

Source: U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Workshop Presentation by Bruce Rodan, June 23, 2009.

Biomass-challenges (2)

- New crops
 - Genetically modified species low lignin and high sugar content
 - Growing on marginal land
- Biomass growing cycle (high yield)
 - Use of fertilizers
 - Use of water
- Biomass residues
 - How much can we harvest without affecting the soil nutrition?

Chemical composition

Feedstock	Glucan (cellulose) (%)	Xylan (hemicellulose) (%)	Lignin (%)
Corn stover	37.5	22.4	17.6
Corn fiber	14.3	16.8	8.4
Pine wood	46.4	8.8	29.4
Poplar	49.9	17.4	18.1
Wheat straw	38.2	21.2	23.4
Switchgrass	31.0	20.4	17.6
Office paper	68.6	12.4	11.3

Chemical composition of biomass (adapted from Mosier et al., 2005).

Ideal pretreatment

- Cheap
- Fast
- Robust
- Simple
- Catalyst recycling
- Minimal environmental impact
- Very good overall sugar recovery in hydrolysable and fermentable form

 Generates minimum amount of degradation products

Steam explosion (2)

- One of the most cost effective and efficient pretreatment for agricultural, hardwood and softwood residues
- 3 variables: time, temperature and pH
- Use of SO₂ as catalyst: reaction time and temperature

enzyme accessibility to cellulose

recovery of hemicellulose

Optimization of pretreatment

- Corn fibre: 190°C, 5min, 3% SO₂ (Bura *et al.,* 2004)
- Corn stover: 190°C, 5min, 0% SO₂ (Bura *et al.*, 2005)
- Mixture: corn fibre, corn stover, poplar (1:1:1) 190°C, 5min, 3% SO₂ (Bura *et al., 2005)*
- Rice straw: 200°C, 6min, 0% SO₂
- Poplar: 200°C, 5min, 3% SO₂
- Lodgepole pine: 205°C, 5min, 3% SO₂

We appear to have enough biomass

TABLE 1 Estimated Cellulosic Feedstock Production for Biofuels

	Millions of Dry Tons		
Feedstock Type	Current	2020	
Corn stover	76	112	
Wheat and grass straw	15	18	
Hay	15	18	
Dedicated fuel crops	104	164	
Woody residues ^{<i>a</i>}	110	124	
Animal manure	6	12	
Municipal solid waste	90	100	
Total	416	548	

^aWoody residues currently used for electricity generation are not included in this estimate.

Source: NRC America's Energy Futures Report: "Liquid Transportation Fuels from Coal and Biomass: Technological Status, Costs, and Environmental Impacts," Workshop Presentation by John Miranowski, June 23, 2009.

11/17/2010

Pretreatment-role

- Pretreatment-the most important subprocess in biomass to ethanol fermentation
- Helps in separation of main biomass components (cellulose, hemicellulose and lignin)
- Increase available surface area
- Reduce particle size
- Ideally pretreatment:
 - Solubilizes hemicellulose
 - Increases enzymatic hydrolysibility of cellulose

Economics-challenges (2)

- Lack of performance guarantee
- Less than 1,000 hours of pilot operation
- New combination of processes
- Greater than 10:1 scale-up

Biomass to ethanol facilities

Company/ Location	Feedstock	Pretreatment	Conversion process
ZeaChem/Oregon	Poplar	Chemical	Bioconversion/ Thermoconversion
POET/ Iowa	Corn stover, corn fiber	Base (NH3)	Enzymes, fermentation
Mascoma/ Michigan	Hardwood chips	Steam explosion	Enzymes, fermentation
logen/ Canada	Wheat straw	Steam explosion	Enzymes, fermentation
Bluefire Eth./ S. California	Green waste, wood waste	Acid	Fermentation
Alico/ Florida	Yard/Wood wastes	Thermal/ syngas	Fermentation
Range Fuels/ Georgia	Wood waste, wood crops	Thermal/ syngas	Chemical catalysis